
2007 JavaOneSM Conference | Session TS-6029 |

Session TS-6029

Beyond Blogging:
Feeds in Action

Dave Johnson

Staff Engineer / SW
Sun Microsystems, Inc.
http://rollerweblogger.org/roller

2007 JavaOneSM Conference | Session TS-6029 | 2

Goal

Understand RSS and Atom feed
formats, the Atom Publishing Protocol.

Understand how to use ROME to
consume and produce feeds.

What you'll learn in this session

2007 JavaOneSM Conference | Session TS-6029 | 3

Agenda

The web is bloggy
Understanding RSS and Atom
Consuming feeds with ROME
Producing feeds with ROME
Publishing with ROME Propono
The future...

2007 JavaOneSM Conference | Session TS-6029 | 4

Why talk about blogging at JavaOne?

● Blogs made the web easier

● For writers, readers and software developers

● Blogs brought XML to the masses

2007 JavaOneSM Conference | Session TS-6029 | 5

Bloggers didn't invent XML

● But they perfected and popularized XML feeds
● e.g. Dave Winer, Dan Libby and RSS
● e.g. Gregorio, Pilgrim, Ruby and Atom

● And kicked off XML web services
● e.g. Dave Winer created XML-RPC, precursor to

SOAP, for his Frontier CMS

● And then blogging hit the big time...

2007 JavaOneSM Conference | Session TS-6029 | 6

State of the blogosphere

2007 JavaOneSM Conference | Session TS-6029 | 7

Suddenly everybody has a blog

● Suddenly it's easy for software to monitor, parse,
publish, filter and aggregate web content

● And the web is bloggy
● Every web site has XML feeds
● Every web site has a simple XML API

● Bloggy?

2007 JavaOneSM Conference | Session TS-6029 | 8

That's right, bloggy

● Everything is a time-stamped, uniquely identified
chunk of data with meta-data

● News stories
● Search results
● Uploaded photos
● Events and meetups
● Podcasts and Vodcasts

● OK, not everything, but you get the idea...

● Bug reports
● Wiki changes
● Source code changes
● O/S log messages

2007 JavaOneSM Conference | Session TS-6029 | 9

Feeds on the web today

Producer

Consumer

Flickr.com

Server
Client

Blogger.com

Wordpress.comDigg.com

Firefox

MarsEdit

Google Data

Meetup.com

FeedDemon NetNewsWire

MySpace

Tailrank

w.bloggar

Ecto

Rojo

BlogLines

MyYahoo

del.icio.us

Technorati

YouTube

Windows Vista

IE7 Safari

MS Word 2007 Ant

iTunes
Google Reader

2007 JavaOneSM Conference | Session TS-6029 | 10

Feeds as an integration technology
Mail-blog
gateways

Source control

Issue Trackers

Build systems

Mobile phones

Mail clients

Feed readers

MP3 players

Collab. server

Blog Planet
Search

engines

Other blog
servers

File servers

SMTP

POP3 / IMAP

Web browsers

Other blog
servers

Blog clients

RSS/Atom feed

Mail protocol

XML-RPC or
Atom protocol

Wiki

Feeds in Feeds out

2007 JavaOneSM Conference | Session TS-6029 | 11

Meanwhile: web services got uppity

● SOAP took over where XML-RPC left off
● WSDL, UDDI and Schema exploded into today's

complex WS-* stack.

2007 JavaOneSM Conference | Session TS-6029 | 12

But most developers didn't follow

● Developers prefer REST
● “Amazon has both SOAP and REST interfaces to their

web services, and 85% of their usage is of the REST
interface.” -- Tim O'Reilly

● And even WS-Advocates agree
● “for applications that require Internet scalability (e.g.,

mass consumer-oriented services), plain old XML
(POX) is a much better solution than WS-*.”

-- Anne Thomas Mannes

2007 JavaOneSM Conference | Session TS-6029 | 13

And now RSS and Atom are emerging

● As a foundation for simple web services
● For example:

● Yahoo Pipes for end-user mash-ups via RSS
● Google Data using Atom Publishing Protocol
● Lucene-WS using Atom Publishing Protocol
● Eclipse's Europa build system

● Let's return to the topic of feeds

2007 JavaOneSM Conference | Session TS-6029 | 14

Agenda

The web is bloggy
Understanding RSS and Atom
Consuming feeds with ROME
Producing feeds with ROME
Publishing with ROME Propono
The future...

2007 JavaOneSM Conference | Session TS-6029 | 15

What Is a Feed?

● XML representation of uniquely identified, time-
stamped data items with metadata

● Available on the web at a fixed URL

Item
Title
Date
Category
Description
Content

Entry
ID
Title
Date
Author(s)
Category
Summary
Content

Feed
ID
Title
Link
Date
Author(s)

2007 JavaOneSM Conference | Session TS-6029 | 16

The birth of the RSS feed format

● RSS began life at Netscape in 1999
● First spec was RSS 0.90 by Dan Libby
● Created for the My Netscape portal
● Known as RDF Site Summary (RSS)

● Dave Winer helped with 0.91, removed RDF
● 0.9X formats are obsolete but still in use today

2007 JavaOneSM Conference | Session TS-6029 | 17

The RDF fork: RSS 1.0

● After RSS 0.91, Winer tried to keep RSS simple
● RDF folks argued for extensibility

● The RDF folks declared victory and released 1.0
● Small set of elements, augmented by RDF
● And Extension Modules

● Adopted by Movable Type and many others
● RSS 1.0 is still widely used today

2007 JavaOneSM Conference | Session TS-6029 | 18

Elements of RSS 1.0 (abridged)

<RDF:rdf>

<channel>
<items>

Required

Optional

<link>

<description>

<title>

Extension

<xx:yyy>

<item><item>
<description>

<title>

<link>

<xx:yyy>
Note: items not

in <channel> as
they were in 0.9X

Allows
foreign
markup

2007 JavaOneSM Conference | Session TS-6029 | 19

Feed Extension Modules

● An Extension Module is a set of XML extension
elements sharing a common name-space

● Examples:
● GeoRSS
● iTunes
● Slashdot
● etc.

2007 JavaOneSM Conference | Session TS-6029 | 20

The simple fork: RSS 0.92 – RSS 2.0

● Winer rejected 1.0 and continued with 0.92, 0.93
and finally 2.0. Along the way RSS:

● Added more metadata
● Added <enclosure> element – Podcasting!
● Added support for Extension Modules
● Made elements under <item> optional

● RSS 2.0 declared to be final version of RSS

2007 JavaOneSM Conference | Session TS-6029 | 21

<item>

Elements of RSS 2.0 (abridged)

<rss> <channel> <item> <link>

<description>

<pubDate>

<enclosure>

<guid>

<title>

Required

Optional

One is
required

Podcast

“Permalink”

<link>

<description>

<title>

<xx:yyy>

<xx:yyy>

Extension
Allows foreign
markup

<author>

<category>

<author>

2007 JavaOneSM Conference | Session TS-6029 | 22

RSS 2.0 Example

<rss version="2.0">
<channel>
<title>Latest Bugs</title>
<link>http://bugtrack/bugreport</link>

 <item>
 <title>Blue screen on refresh</title>
 <link>http://bugtrack/bugreport?id=132</link>
 <description>
 This is very bad.
 </description>
 <pubDate>Fri, 11 May 2007 15:00:00 EDT</pubDate>
 </item>

</rss>

http://bugtrack/bugreport

2007 JavaOneSM Conference | Session TS-6029 | 23

Funky RSS: overuse of extensions?

<rss version="2.0"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<title>Latest Bugs</title>
<link>http://bugtrack/bugreport</link>
 <item>
 <title>Blue screen on refresh</title>
 <link>http://bugtracker/bugreport?id=132</link>
 <description>This is very bad.
 </description>
 <dc:date>2007-05-11T15:00:00-00:00</dc:date>
 <dc:creator>Joe Tester</dc:creator>
 </item>
</rss>

2007 JavaOneSM Conference | Session TS-6029 | 24

RSS limitations

● Spec is too loose and unclear
● What fields can be escaped HTML?
● How many enclosures are allowed per item?

● Content model is weak
● No support for summary and content
● Content-type and escaping not specified

● Specification is final and can not be clarified

2007 JavaOneSM Conference | Session TS-6029 | 25

What is Atom?

● From the IETF Atom WG charter:

Atom defines a feed format for representing and a
protocol for editing Web resources such as Weblogs,
online journals, Wikis, and similar content.

● Feed format is now IETF RFC-4287

● Protocol will be finalized in 2007

2007 JavaOneSM Conference | Session TS-6029 | 26

Atom Publishing Format

● An XML feed format. Feed contains entries
● Entries are

● Time-stamped, uniquely ID'ed chunks of data
● With meta-data: title, dates, categories
● Entry content can be:

● TEXT, HTML, XHTML or any content-type
● In-line or out-of-line specified by URI
● Binary data w/Base64 encoding

● It's generic, not just for blogs.

Feed
Title
Updated
Link

Entry
Id
Title
Updated
Link
Content

Entry
Id
Title
Updated
Link
Content

Entry
Id
Title
Updated
Link
Content

2007 JavaOneSM Conference | Session TS-6029 | 27

Elements of Atom (abridged)

<feed>

<updated>

<content>
@type
@src

<category>

<title>

Required

Optional

<updated>

<title>

<link> <id>

<author>

<link>

<link><link>

<subtitle>

Extension

<xx:yyy>

<author>

<xx:yyy>

<name>

<url>

<email>
<<person>>

<entry>

<published>

Links can be
permalink,

podcasts, etc.

Type can be
text, html, xhtml
or content type

URI if content
is out-of-line

<<person>>

<<person>>

<category>

Self link,
site link

and others

<summary>

2007 JavaOneSM Conference | Session TS-6029 | 28

Atom <feed> with one <entry>
<feed xmlns='http://www.w3.org/2005/Atom'>
 <title>Latest Bugs</title>
 <link href='http://bugtracker/bugreport' />
 <link rel='self'
 href='http://bugtracker/feeds/bugreport'/>
 <updated>2007-05-11T15:00:00-00:00</updated>
 <author><name>BugTracker-5000-XL</name></author>
 <entry>
 <title>Blue screen on refresh</title>
 <link href='http://bugtracker/bugreport?id=132' />
 <id>http://bugtracker/bugreport?id=132</id>
 <updated>2007-05-11T15:00:00-00:00</updated>
 <content type='html'>
 This is very bad.
 </content>
 </entry>
</feed>

2007 JavaOneSM Conference | Session TS-6029 | 29

RSS and Atom feed family tree

RSS
1.0

RSS
0.92

RSS
0.90

Atom

RSS
0.91

RSS
0.93

RSS
0.94

RSS
2.0

Netscape

Simple Fork
Dave Winer

RDF Fork
RSS-DEV Group

Internet Engineering
Task Formce (IETF)

200520021999 20012000

RSS
0.91

2007 JavaOneSM Conference | Session TS-6029 | 30

Agenda

The web is bloggy
Understanding RSS and Atom
Consuming feeds with ROME
Producing feeds with ROME
Publishing with ROME Propono
The future...

2007 JavaOneSM Conference | Session TS-6029 | 31

Parsing and fetching feeds

● It's just XML!
● Use your favorite parsing technique

● Or better yet... use a parser library
● ROME: DOM based feed parser/generator (Java)
● Abdera: STAX based Atom-only parser (Java)
● Universal Feed Parser (Python)
● Windows RSS Platform: parser built-in to IE7

2007 JavaOneSM Conference | Session TS-6029 | 32

ROME RSS/Atom feed utilities

● Most capable Java based toolkit
● Pros

● Parses / generates all forms of RSS and Atom
● Highly pluggable/extensible, based on JDOM
● Parses to Atom, RSS or abstract object model

● Con: DOM based

● Free and open source (Apache license)

2007 JavaOneSM Conference | Session TS-6029 | 33

How does ROME work?

SyndFeed modelConve
rt Convert

RSS model Atom model

Channel

ItemItem

Feed

ItemEntry

SyndFeed

ItemSyndEntry

2007 JavaOneSM Conference | Session TS-6029 | 34

SyndLink
title
type
rel
length
href

ROME SyndFeed model

SyndEntry
id
published
rights
source
summary
title
updated

SyndContent
value
src
type

SyndLink
title
type
rel
length
href

label
term
scheme

SyndEntry
id
published
rights
source
summary
title
updated

SyndCategory
label
term
scheme

SyndEntry
id
published
rights
source
summary
title
updated

SyndFeed
author
copyright
description
encoding
feedType
image
language
link
modules
publishedDate
title
uri

2007 JavaOneSM Conference | Session TS-6029 | 35

Parsing a feed with ROME SyndFeed

SyndFeedInput input = new SyndFeedInput();
SyndFeed feed = input.build(
 new InputStreamReader(inputStream));

Iterator entries = feed.getEntries().iterator();

while (entries.hasNext()) {
 SyndEntry entry = (SyndEntry)entries.next();
 System.out.println("Title: " + entry.getTitle());
 System.out.println("Link: " + entry.getLink());
 System.out.println("\n");
}

2007 JavaOneSM Conference | Session TS-6029 | 36

How to fetch feeds

● Be nice and conserve bandwidth
● Use HTTP conditional GET or Etags
● Don't poll too often

● Your parser library might do the work for you
● ROME's Fetcher provides a caching feed-store
● Other parsers do too

2007 JavaOneSM Conference | Session TS-6029 | 37

Fetching a feed with ROME Fetcher

FeedFetcherCache cache =

 new DiskFeedInfoCache("/var/rome-fetcher/cache");

FeedFetcher fetcher = new HttpURLFeedFetcher(cache);

SyndFeed feed = fetcher.retrieveFeed(

 new URL("http://bugtracker/feeds/bugreport"));

Iterator entries = feed.getEntries().iterator();

while (entries.hasNext()) {

 SyndEntry entry = (SyndEntry)entries.next();

 // ... omitted: print out entry ...

}

2007 JavaOneSM Conference | Session TS-6029 | 38

Agenda

The web is bloggy
Understanding RSS and Atom
Consuming feeds with ROME
Producing feeds with ROME
Publishing with ROME Propono
The future...

2007 JavaOneSM Conference | Session TS-6029 | 39

Serving feeds: generate XML

● Use your favorite XML tools or...
● Templates languages like JSP, PHP, ASP.Net

● Or better yet: a feed toolkit like ROME

2007 JavaOneSM Conference | Session TS-6029 | 40

Generating Atom with ROME, pt. 1/2

SyndFeed syndFeed = new SyndFeedImpl();
syndFeed.setTitle("Latest bugs");
syndFeed.setAuthor("BugTrack-9000-XL");
syndFeed.setPublishedDate(BugManager.getUpdateDate());
syndFeed.setLink("http://localhost/bugtracker");
syndFeed.setUri(syndFeed.getLink());

SyndLink selfLink = new SyndLinkImpl();
selfLink.setRel("self");
selfLink.setHref("http://localhost/bugtracker/latest.atom");
syndFeed.setLinks(Collections.singletonList(selfLink));

List entries = new ArrayList();

syndFeed.setEntries(entries);

Atom ID

2007 JavaOneSM Conference | Session TS-6029 | 41

Generating Atom with ROME, pt. 2/2

Iterator bugs = BugManager.getLatestBugs(20).iterator();
while (bugs.hasNext()) {
 Bug bug = (Bug)bugs.next();
 SyndEntry entry = new SyndEntryImpl();
 entry.setTitle(bug.getTitle());
 entry.setUpdatedDate(bug.getDateAdded());
 entry.setLink(
 "http://bugtracker/?bugid=" + bug.getId());
 entry.setUri(entry.getLink());
 SyndContent content = new SyndContentImpl();
 content.setValue(bug.getDescription());
 content.setType("html");
 entry.setContents(Collections.singletonList(content));
 entries.add(entry);
}

Atom ID

2007 JavaOneSM Conference | Session TS-6029 | 42

Serving feeds: serve it up

● Set the right content-type
application/rss+xml
application/atom+xml

● Cache cache cache!
● On client-side via HTTP Conditional GET
● On proxy servers via HTTP headers
● On server-side via your favorite cache tech.

2007 JavaOneSM Conference | Session TS-6029 | 43

Serving Atom with ROME, pt. 1/2
public class BugFeedServlet extends HttpServlet {
 LRUCache cache = new LRUCache(5, 5400);

 protected void doGet(HttpServletRequest req, // ...omitted

 Date since = new Date(
 req.getDateHeader("If-Modified-Since"));
 if (sinceDate != null) {
 if (BugManager.getUpdateDate().compareTo(since) <= 0) {
 res.sendError(HttpServletResponse.SC_NOT_MODIFIED);
 return;
 }
 }
 res.setDateHeader("Last-Modified",
 BugManager.getUpdateDate().getTime());
 res.setHeader("Cache-Control",
 "max-age=5400, must-revalidate");

2007 JavaOneSM Conference | Session TS-6029 | 44

Serving Atom with ROME, pt. 2/2
 String url = request.getRequestURL().toString();
 if (cache.get(url) == null) {

 SyndFeed syndFeed = // ...omitted
 syndFeed.setFeedType("atom_1.0");

 StringWriter stringWriter = new StringWriter();
 SyndFeedOutput output = new SyndFeedOutput();
 output.output(syndFeed, stringWriter);

 cache.put(request.getRequestURL().toString(),
 stringWriter.toString());
 }
 response.setContentType(
 "application/xml+atom;charset=utf-8");
 response.getWriter().write((String)cache.get(url));
 }
}

2007 JavaOneSM Conference | Session TS-6029 | 45

Feed auto-discovery

● Make it easy for applications to find your feeds
● Firefox can do it

● Safari can too

● And even IE

2007 JavaOneSM Conference | Session TS-6029 | 46

Feed auto-discovery

<html>

<head>

<meta http-equiv="Content-Type" content="text/html” />

 <link rel="alternate"

 type="application/atom+xml" title="Latest bugs (Atom)"

 href="http://bugtracker/feeds/bugreport" />

 <link rel="alternate"

 type="application/rss+xml" title="Latest bugs (RSS)"

 href="http://bugtracker/feeds/bugreport?format=rss" />

. . .

2007 JavaOneSM Conference | Session TS-6029 | 47

Serving valid feeds

● Ensure HTML is properly escaped
● Ensure XML is well formed

● Validate!
● feedvalidator.org

2007 JavaOneSM Conference | Session TS-6029 | 48

Agenda

The web is bloggy
Understanding RSS and Atom
Consuming feeds with ROME
Producing feeds with ROME
Publishing with ROME Propono
The future...

2007 JavaOneSM Conference | Session TS-6029 | 49

Feed publishing protocols

● Blogger API: Simple XML-RPC based protocol
(by Blogger.com)

● MetaWeblog API: Extends Blogger API by adding
RSS-based metadata (by Dave Winer)

● Atom Publishing Protocol: REST-based web
publishing protocol uses Atom format (IETF).

2007 JavaOneSM Conference | Session TS-6029 | 50

The MetaWeblog API

getUserBlogs Get blogs as array of structures

newPost Create new blog post by passing in structure*

getPost Get blog post by id

getRecentPosts Get most recent N blog posts

editPost Update existing blog post

deletePost Delete blog post specified by id

newMediaObject Upload file to blog (e.g. picture of my cat)

getCategories Get categories allowed in blog

2007 JavaOneSM Conference | Session TS-6029 | 51

The Atom Publishing Protocol

“application-level protocol for publishing and
editing Web resources using HTTP”

● Based on Atom Publishing Format

● Began as a replacement old blogging APIs
● Grew into a generic publishing protocol

2007 JavaOneSM Conference | Session TS-6029 | 52

What does Atom protocol do?

● Everything MetaWeblog API does
● But it's generic, not just for blogs

● Entry can be any type of data
● CRUD on entries organized in collections
● Where CRUD = create, retrieve, update & delete

● Based on principals of REST

2007 JavaOneSM Conference | Session TS-6029 | 53

How does it do all that?

● The REST way:
● Everything's a resource, addressable by URI
● HTTP verbs used for all operations

● HTTP POST to create entries
● HTTP GET to retrieve entries and collections
● HTTP PUT to update entries
● HTTP DELETE to delete entries

2007 JavaOneSM Conference | Session TS-6029 | 54

APP Introspection

GET from endpoint URI

 Service document

client server

2007 JavaOneSM Conference | Session TS-6029 | 55

APP introspection document

<?xml version="1.0" encoding='utf-8'?>
<service xmlns="http://purl.org/atom/app#">
 <workspace title="Order Management issues" >
 <collection title="Bug Reports"
 href="http://bugtrack/app/om/entries" >
 <accept>entry</accept>
 </collection>
 <collection title="Screenshots"
 href="http://bugtrack/app/om/screenshots" >
 <accept>image/*</accept>
 </collection>
 </workspace>
</service>

2007 JavaOneSM Conference | Session TS-6029 | 56

An Atom collection <feed>

 <feed xmlns="http://www.w3.org/2005/Atom">

 <link rel="next"
 href="http://example.org/blog/app/entries/60" />
 <link rel="previous"
 href="http://example.org/entries/20" />
 ...
 <entry> ... </entry>
 <entry> ... </entry>
 <entry> ... </entry>
 <entry> ... </entry>
 ...
 </feed>

URIs for
next and previous

portions of collection

http://www.w3.org/2005/Atom

2007 JavaOneSM Conference | Session TS-6029 | 57

Getting an APP collection - with paging

client

GET from collection URI

First portion of collection

client

GET from collection next URI

Next portion of collection

server

server

2007 JavaOneSM Conference | Session TS-6029 | 58

<entry> in a collection

 <entry>
 <title>NPE on new order query</title>
 <link rel="alternate"
 href="http://bugtracker/bugreport?id=757” />
 <link rel="edit"
 href="http://bugtracker/app/bug/757" />
 <id>http://bugtracker/bugreport?id=757</id>
 <updated>2007-05-08T22:08:03Z</updated>
 <published>2007-05-11T01:07:59Z</published>
 <content type="html">This is <bad> bad.
 </content>
 </entry>
</feed>

Edit URI for entry

2007 JavaOneSM Conference | Session TS-6029 | 59

Creating an entry

serverclient

POST to collection URI

Resulting Atom entry

entry.xml

2007 JavaOneSM Conference | Session TS-6029 | 60

ROME Propono

● APP Client Library
● Makes it easy to build an APP client app

● APP Server Library
● Makes it easy to add an APP server to your webapp

● Blog Client Library
● Suports both MetaWeblog API and APP
● Blog centric and not as generic as APP Client Library

2007 JavaOneSM Conference | Session TS-6029 | 61

ROME Propono – Atom Common API

AtomService

Collection
title
accepts
href

Workspace
title

Workspace
title

Collection
title
accepts
href

2007 JavaOneSM Conference | Session TS-6029 | 62

ROME Propono – Atom Client API

ClientAtomService

ClientWorkspace
getEntry(uri)
findCollection(title)

ROME
Atom
model

Feed

ItemEntry

ClientEntry
update()
remove()

ClientMediaEntry
getInputStream()
setInputStream()

ClientCollection
isWritable()
createEntry()
createMediaEntry()
addEntry(entry)
getEntries()
getEntry(uri)

Has 1..N

Has 1..N

CRUD

CRUD

2007 JavaOneSM Conference | Session TS-6029 | 63

ROME Propono: posting an entry

ClientAtomService service =
AtomClientFactory.getAtomService(endpoint, uname, pword);

ClientWorkspace ws =
(ClientWorkspace)service.findWorkspace("Order System");

ClientCollection collection =
(ClientCollection)ws.findCollection(null, "entry");

ClientEntry entry = collection.createEntry();
entry.setTitle("NPE on submitting new order query");
entry.setContent(Content.HTML, "This is a bad one!");
collection.addEntry(entry);

2007 JavaOneSM Conference | Session TS-6029 | 64

Agenda

The web is bloggy
Understanding RSS and Atom
Consuming feeds with ROME
Producing feeds with ROME
Publishing with ROME Propono
The future...

2007 JavaOneSM Conference | Session TS-6029 | 65

RSS/Atom trends

● Better RSS/Atom support in Java
● Thanks to ROME and Abdera. Time for a JSR?

● More REST-based web services in general
● Made easy by REST API, Restlets, XFire, etc.

● More web services based on Atom
● APP as canonical REST protocol

2007 JavaOneSM Conference | Session TS-6029 | 66

For More Information

● Sun Web Developer Pack
● http://developers.sun.com/web/swdp

● Related open source projects
● http://rome.dev.java.net
● http://incubator.apache.org/abdera
● http://blogapps.dev.java.net

● RSS and Atom in Action
● http://manning.com/dmjohnson

http://developers.sun.com/web/swdp
http://rome.dev.java.net/
http://incubator.apache.org/abdera
http://blogapps.dev.java.net/
http://manning.com/dmjohnson

2007 JavaOneSM Conference | Session TS-6029 | 67

Summary

● RSS and Atom: not just for blogs anymore

● Feeds should be part of every developers tool-kit

● ROME has the tools you need for
● Consuming and producing RSS and Atom feeds
● Publishing to blogs via MetaWeblog API
● Publishing to other systems via Atom protocol

2007 JavaOneSM Conference | Session XXXX | 68

Q&A
Dave Johnson

	Example Presentation Title
	Goal of Your Talk (Statement)
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Enterprise Blogging
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	feed
	Slide 16
	Slide 17
	rss1.0
	Slide 19
	Slide 20
	rss2.0
	rss2.0 example
	funky
	Slide 24
	Slide 25
	Slide 26
	atom elements
	atom format ex
	family
	Slide 30
	parsing
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	serving
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	more info
	Conclusion: Summary of Talk
	Q&A

